\(\int x^2 \arccos (a x)^3 \, dx\) [24]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 136 \[ \int x^2 \arccos (a x)^3 \, dx=\frac {14 \sqrt {1-a^2 x^2}}{9 a^3}-\frac {2 \left (1-a^2 x^2\right )^{3/2}}{27 a^3}-\frac {4 x \arccos (a x)}{3 a^2}-\frac {2}{9} x^3 \arccos (a x)-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3 \]

[Out]

-2/27*(-a^2*x^2+1)^(3/2)/a^3-4/3*x*arccos(a*x)/a^2-2/9*x^3*arccos(a*x)+1/3*x^3*arccos(a*x)^3+14/9*(-a^2*x^2+1)
^(1/2)/a^3-2/3*arccos(a*x)^2*(-a^2*x^2+1)^(1/2)/a^3-1/3*x^2*arccos(a*x)^2*(-a^2*x^2+1)^(1/2)/a

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.700, Rules used = {4724, 4796, 4768, 4716, 267, 272, 45} \[ \int x^2 \arccos (a x)^3 \, dx=-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}-\frac {4 x \arccos (a x)}{3 a^2}-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {2 \left (1-a^2 x^2\right )^{3/2}}{27 a^3}+\frac {14 \sqrt {1-a^2 x^2}}{9 a^3}+\frac {1}{3} x^3 \arccos (a x)^3-\frac {2}{9} x^3 \arccos (a x) \]

[In]

Int[x^2*ArcCos[a*x]^3,x]

[Out]

(14*Sqrt[1 - a^2*x^2])/(9*a^3) - (2*(1 - a^2*x^2)^(3/2))/(27*a^3) - (4*x*ArcCos[a*x])/(3*a^2) - (2*x^3*ArcCos[
a*x])/9 - (2*Sqrt[1 - a^2*x^2]*ArcCos[a*x]^2)/(3*a^3) - (x^2*Sqrt[1 - a^2*x^2]*ArcCos[a*x]^2)/(3*a) + (x^3*Arc
Cos[a*x]^3)/3

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4716

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCos[c*x])^n, x] + Dist[b*c*n, Int[
x*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 4724

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCo
s[c*x])^n/(d*(m + 1))), x] + Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4768

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcCos[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4796

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] - Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} x^3 \arccos (a x)^3+a \int \frac {x^3 \arccos (a x)^2}{\sqrt {1-a^2 x^2}} \, dx \\ & = -\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3-\frac {2}{3} \int x^2 \arccos (a x) \, dx+\frac {2 \int \frac {x \arccos (a x)^2}{\sqrt {1-a^2 x^2}} \, dx}{3 a} \\ & = -\frac {2}{9} x^3 \arccos (a x)-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3-\frac {4 \int \arccos (a x) \, dx}{3 a^2}-\frac {1}{9} (2 a) \int \frac {x^3}{\sqrt {1-a^2 x^2}} \, dx \\ & = -\frac {4 x \arccos (a x)}{3 a^2}-\frac {2}{9} x^3 \arccos (a x)-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3-\frac {4 \int \frac {x}{\sqrt {1-a^2 x^2}} \, dx}{3 a}-\frac {1}{9} a \text {Subst}\left (\int \frac {x}{\sqrt {1-a^2 x}} \, dx,x,x^2\right ) \\ & = \frac {4 \sqrt {1-a^2 x^2}}{3 a^3}-\frac {4 x \arccos (a x)}{3 a^2}-\frac {2}{9} x^3 \arccos (a x)-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3-\frac {1}{9} a \text {Subst}\left (\int \left (\frac {1}{a^2 \sqrt {1-a^2 x}}-\frac {\sqrt {1-a^2 x}}{a^2}\right ) \, dx,x,x^2\right ) \\ & = \frac {14 \sqrt {1-a^2 x^2}}{9 a^3}-\frac {2 \left (1-a^2 x^2\right )^{3/2}}{27 a^3}-\frac {4 x \arccos (a x)}{3 a^2}-\frac {2}{9} x^3 \arccos (a x)-\frac {2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a^3}-\frac {x^2 \sqrt {1-a^2 x^2} \arccos (a x)^2}{3 a}+\frac {1}{3} x^3 \arccos (a x)^3 \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.70 \[ \int x^2 \arccos (a x)^3 \, dx=\frac {2 \sqrt {1-a^2 x^2} \left (20+a^2 x^2\right )-6 a x \left (6+a^2 x^2\right ) \arccos (a x)-9 \sqrt {1-a^2 x^2} \left (2+a^2 x^2\right ) \arccos (a x)^2+9 a^3 x^3 \arccos (a x)^3}{27 a^3} \]

[In]

Integrate[x^2*ArcCos[a*x]^3,x]

[Out]

(2*Sqrt[1 - a^2*x^2]*(20 + a^2*x^2) - 6*a*x*(6 + a^2*x^2)*ArcCos[a*x] - 9*Sqrt[1 - a^2*x^2]*(2 + a^2*x^2)*ArcC
os[a*x]^2 + 9*a^3*x^3*ArcCos[a*x]^3)/(27*a^3)

Maple [A] (verified)

Time = 1.12 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.78

method result size
derivativedivides \(\frac {\frac {a^{3} x^{3} \arccos \left (a x \right )^{3}}{3}-\frac {\arccos \left (a x \right )^{2} \left (a^{2} x^{2}+2\right ) \sqrt {-a^{2} x^{2}+1}}{3}+\frac {4 \sqrt {-a^{2} x^{2}+1}}{3}-\frac {4 a x \arccos \left (a x \right )}{3}-\frac {2 a^{3} x^{3} \arccos \left (a x \right )}{9}+\frac {2 \left (a^{2} x^{2}+2\right ) \sqrt {-a^{2} x^{2}+1}}{27}}{a^{3}}\) \(106\)
default \(\frac {\frac {a^{3} x^{3} \arccos \left (a x \right )^{3}}{3}-\frac {\arccos \left (a x \right )^{2} \left (a^{2} x^{2}+2\right ) \sqrt {-a^{2} x^{2}+1}}{3}+\frac {4 \sqrt {-a^{2} x^{2}+1}}{3}-\frac {4 a x \arccos \left (a x \right )}{3}-\frac {2 a^{3} x^{3} \arccos \left (a x \right )}{9}+\frac {2 \left (a^{2} x^{2}+2\right ) \sqrt {-a^{2} x^{2}+1}}{27}}{a^{3}}\) \(106\)

[In]

int(x^2*arccos(a*x)^3,x,method=_RETURNVERBOSE)

[Out]

1/a^3*(1/3*a^3*x^3*arccos(a*x)^3-1/3*arccos(a*x)^2*(a^2*x^2+2)*(-a^2*x^2+1)^(1/2)+4/3*(-a^2*x^2+1)^(1/2)-4/3*a
*x*arccos(a*x)-2/9*a^3*x^3*arccos(a*x)+2/27*(a^2*x^2+2)*(-a^2*x^2+1)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.57 \[ \int x^2 \arccos (a x)^3 \, dx=\frac {9 \, a^{3} x^{3} \arccos \left (a x\right )^{3} - 6 \, {\left (a^{3} x^{3} + 6 \, a x\right )} \arccos \left (a x\right ) + {\left (2 \, a^{2} x^{2} - 9 \, {\left (a^{2} x^{2} + 2\right )} \arccos \left (a x\right )^{2} + 40\right )} \sqrt {-a^{2} x^{2} + 1}}{27 \, a^{3}} \]

[In]

integrate(x^2*arccos(a*x)^3,x, algorithm="fricas")

[Out]

1/27*(9*a^3*x^3*arccos(a*x)^3 - 6*(a^3*x^3 + 6*a*x)*arccos(a*x) + (2*a^2*x^2 - 9*(a^2*x^2 + 2)*arccos(a*x)^2 +
 40)*sqrt(-a^2*x^2 + 1))/a^3

Sympy [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.99 \[ \int x^2 \arccos (a x)^3 \, dx=\begin {cases} \frac {x^{3} \operatorname {acos}^{3}{\left (a x \right )}}{3} - \frac {2 x^{3} \operatorname {acos}{\left (a x \right )}}{9} - \frac {x^{2} \sqrt {- a^{2} x^{2} + 1} \operatorname {acos}^{2}{\left (a x \right )}}{3 a} + \frac {2 x^{2} \sqrt {- a^{2} x^{2} + 1}}{27 a} - \frac {4 x \operatorname {acos}{\left (a x \right )}}{3 a^{2}} - \frac {2 \sqrt {- a^{2} x^{2} + 1} \operatorname {acos}^{2}{\left (a x \right )}}{3 a^{3}} + \frac {40 \sqrt {- a^{2} x^{2} + 1}}{27 a^{3}} & \text {for}\: a \neq 0 \\\frac {\pi ^{3} x^{3}}{24} & \text {otherwise} \end {cases} \]

[In]

integrate(x**2*acos(a*x)**3,x)

[Out]

Piecewise((x**3*acos(a*x)**3/3 - 2*x**3*acos(a*x)/9 - x**2*sqrt(-a**2*x**2 + 1)*acos(a*x)**2/(3*a) + 2*x**2*sq
rt(-a**2*x**2 + 1)/(27*a) - 4*x*acos(a*x)/(3*a**2) - 2*sqrt(-a**2*x**2 + 1)*acos(a*x)**2/(3*a**3) + 40*sqrt(-a
**2*x**2 + 1)/(27*a**3), Ne(a, 0)), (pi**3*x**3/24, True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.88 \[ \int x^2 \arccos (a x)^3 \, dx=\frac {1}{3} \, x^{3} \arccos \left (a x\right )^{3} - \frac {1}{3} \, a {\left (\frac {\sqrt {-a^{2} x^{2} + 1} x^{2}}{a^{2}} + \frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{a^{4}}\right )} \arccos \left (a x\right )^{2} + \frac {2}{27} \, a {\left (\frac {\sqrt {-a^{2} x^{2} + 1} x^{2} + \frac {20 \, \sqrt {-a^{2} x^{2} + 1}}{a^{2}}}{a^{2}} - \frac {3 \, {\left (a^{2} x^{3} + 6 \, x\right )} \arccos \left (a x\right )}{a^{3}}\right )} \]

[In]

integrate(x^2*arccos(a*x)^3,x, algorithm="maxima")

[Out]

1/3*x^3*arccos(a*x)^3 - 1/3*a*(sqrt(-a^2*x^2 + 1)*x^2/a^2 + 2*sqrt(-a^2*x^2 + 1)/a^4)*arccos(a*x)^2 + 2/27*a*(
(sqrt(-a^2*x^2 + 1)*x^2 + 20*sqrt(-a^2*x^2 + 1)/a^2)/a^2 - 3*(a^2*x^3 + 6*x)*arccos(a*x)/a^3)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.86 \[ \int x^2 \arccos (a x)^3 \, dx=\frac {1}{3} \, x^{3} \arccos \left (a x\right )^{3} - \frac {2}{9} \, x^{3} \arccos \left (a x\right ) - \frac {\sqrt {-a^{2} x^{2} + 1} x^{2} \arccos \left (a x\right )^{2}}{3 \, a} + \frac {2 \, \sqrt {-a^{2} x^{2} + 1} x^{2}}{27 \, a} - \frac {4 \, x \arccos \left (a x\right )}{3 \, a^{2}} - \frac {2 \, \sqrt {-a^{2} x^{2} + 1} \arccos \left (a x\right )^{2}}{3 \, a^{3}} + \frac {40 \, \sqrt {-a^{2} x^{2} + 1}}{27 \, a^{3}} \]

[In]

integrate(x^2*arccos(a*x)^3,x, algorithm="giac")

[Out]

1/3*x^3*arccos(a*x)^3 - 2/9*x^3*arccos(a*x) - 1/3*sqrt(-a^2*x^2 + 1)*x^2*arccos(a*x)^2/a + 2/27*sqrt(-a^2*x^2
+ 1)*x^2/a - 4/3*x*arccos(a*x)/a^2 - 2/3*sqrt(-a^2*x^2 + 1)*arccos(a*x)^2/a^3 + 40/27*sqrt(-a^2*x^2 + 1)/a^3

Mupad [F(-1)]

Timed out. \[ \int x^2 \arccos (a x)^3 \, dx=\int x^2\,{\mathrm {acos}\left (a\,x\right )}^3 \,d x \]

[In]

int(x^2*acos(a*x)^3,x)

[Out]

int(x^2*acos(a*x)^3, x)